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Abstract

Current linear pendulum gravitational wave detectors have undesirably large resonant fre-
quencies and observe at ≥ 10 Hz, below which their reception of g-waves is obfuscated by a
strong response to seismic noise. These detectors thus fail to detect a bandwidth of smaller fre-
quencies associated with many interesting astrophysical phenomenon. A linear pendulum’s res-
onant frequency is insensitive to changes in pendulum length, but a torsion pendulum’s resonant
frequency is much more easily modulated. The proposed magnetically assisted gravitational-
wave pendulum intorsion (MAGPI) uses magnetic assistance to sustain an asymmetric torsion
pendulum which can couple to gravitational waves in the millihertz band. The feasibility of a
small-scale MAGPI implementation was here investigated across several design iterations, and
a physical configuration is proposed.
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Figure 1: Visualisation of exaggerated orthogonal, oscillating space strains from a passing gravi-
tational wave through the page, of frequency f . Four instances in time are displayed across the
period of the wave (alignment with the time axis is arbitrary), and show alternating horizontal and
vertical contraction and elongation.

2 Introduction

2.1 Gravitational Waves

For almost a century, Einstein’s field equations have provided a theoretical basis for the existence
of gravitational waves; propagating, quadrupolar deformations of space. Gravitational waves incur
a compression of space in a direction orthogonal to the wave’s propagation, and elongation in the
direction orthogonal to both, alternating at the frequency of the wave [1].

A gravitational wave incident on a system of free particles causes apparent oscillatory motion in
the orthogonal plane, as visualised in Figure 1. At a particular region in space, we model the space-
strain due to a passing wave as sinusoidal in each of the propagation-orthogonal directions.

2.2 Astrophyiscal Motivation

The union of General Relativity and Astrophysics has presented a variety of potential sources of
gravitational waves.

With current detector technologies, black holes, low-mass X-ray binaries (two star systems luminous
in X-rays), fast pulsars (rapidly rotating, magnetised neutron stars) and many more astrophysical
phenomenon can be studied by detection of their emitted high-frequency gravitational waves [2];
waves with frequencies within 1–103 Hz.

However, many interesting astrophysical events produce gravitational waves in the low frequency
band 10−4–1 Hz, below the audible band of these detectors. These include massive black hole
mergers (merging black holes of mass 104–107 solar masses), extreme-mass-ratio inspirals (the
inspiral of massive, compact objects like white dwarfs, neutron stars and stellar mass black holes
into massive black holes) and even early cosmological processes [3, p. 228].
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Figure 2: A laser Michelson interferometer between linear pendulums, as employed in LIGO for
gravitational wave detection [4]. The quadrupolar nature of an incident gravitational wave (vi-
sualised above the detectors) sees an anticorrelated strain in the orthogonal light storage arms
to which the Michelson interferometer is most sensitive, leading to detectable interference at the
photodetector [1].

2.3 Current Detectors

Current gravitational wave observatories, such as the LIGO facilities, feature a laser Michelson
interferometer between pairs of linear pendulums (see Figure 2), the bobs of which act as free-
masses (referred to as the test masses) upon which mirrors are fixed.

A gravitational wave passing through the interferometer, at a particular instance in time, elongates
the space between the pair of test masses in one arm and compresses the space between the other.
This leads to detectable interference of the laser light at the photodetector. Over time, the al-
ternating nature of the gravitational wave strain produces oscillatory interference from which the
gravitational wave is analysed [4].

Even the Advanced LIGO detectors however observe only in the 10–100 Hz band [5] due to an
attenuated gravitational-wave response and strong mechanical response of the pendulums to obfus-
cating, extraneous noise forces at lower frequencies. This is an artefact of the mechanics of linear
pendulums which see little response to below-resonant frequency driving forces at their masses but
strong response to those at their suspension point, where gravitational strains and mechanical noises
(such as seismic) ‘act’ respectively.

Since the resonant frequency of a linear pendulum varies inversely with the root of its arm length,
a reduction in resonant frequency from 1 Hz to 1 mHz would require a physically infeasible factor
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Figure 3: Visualisation of the adopted cartesian axis and yaw (γ), roll (φ) and pitch (θ) rotational
axes about the torsion pendulum. The origin lies at the left end of the pendulum arm, when
suspended parallel to the ground (the center of any attached mass or magnet at that point). The
z axis is vertical and the y axis extends into the image.

106 expansion in vertical arm length. This insensitivity places a strict lower limit on the resonant
frequency of terrestrial linear pendulum detectors and their resulting gravitational-wave detection
band.

2.4 The MAGPI

Torsion pendulums may swing like linear pendulums, but offer additional axes of rotation as il-
lustrated in Figure 3, to which gravitational-waves may couple. Of particular usefulness, torsion
pendulums offer resonant yaw frequencies inversely proportional to the root of their moment of
inertia about the yaw axis (their lower suspension point). Since the pendulum arm is lateral, this
moment of inertia can be increased (and the resonant yaw frequency decreased) by a relatively easy
increase in arm length or changes in mass distribution along the arm.

However, static suspension of an otherwise unassisted torsion pendulum requires its center of mass
be at its lower suspension point, otherwise Earth’s gravitational field exerts a net rolling torque. In
this static setup, an incident gravitational wave, acting at the center of mass, would incur a zero
yaw torque on the pendulum, causing it so swing as if it were linear.

The magnetically assisted gravitational-wave pendulum intorsion (MAGPI) design features an
asymmetric torsion pendulum with an attached permanent magnet and a center of mass apart
from the suspension point, allowing gravitational wave coupling. This is illustrated in Figure 4.
The gravitational roll torque is countered by a magnetic torque, produced by the fixed magnet’s
interaction with an external magnetic field. The MAGPI constitutes a stable, gravitational-wave
coupling, low resonant frequency pendulum and enables the theoretical detection of millihertz grav-
itational waves.
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Figure 4: Illustration of the magnetically assisted gravitational-wave pendulum intorsion. The same
cartesian and rotational axes are adopted as those in Figure 3. A spherical magnet of radius Rm,
mass mm and remanence Bmẑ is fixed at the left end of the torsion pendulum arm (x = 0, when
the arm is parallel to the ground). The arm is suspended at xs by a cable of radius Rs and length
Ls, made of material with modulus of rigidity Gs and yield strength σy. A mirror of negligible
weight is fixed at the ‘Levin point’ xL, though this is not a free parameter. A spherical test mass
of mass mt and radius Rt is positioned at xt. The pendulum arm is supported by a cylindrical rod
of length Lr, radius Rr and mass mr.

3 Background Theory

3.1 Gravitational Wave Coupling

An incident gravitational wave of frequency f on a Michelson interferometer arm of length L induces
a sinusoidal strain h(t) of equal frequency [3]. This results in an apparent interferometer arm
length Lh(t), with second derivative Lḧ(t), causing an oscillatory change in the distance between
free bodies in the plane orthogonal to the wave. If masses in the plane appear free (which, for
pendulums, depends on the frequency of the wave), their displacements from their equilibrium
positions is measurable and the wave detectable. Such motion of the test masses can be modelled
as that resulting from a hypothetical driving force in constant, strain-free space, given by Newton’s
second law as

F (t) = mLḧ(t). (1)

Since current gravitational wave observatories expect strains smaller than 1 × 10−21 [6], a small
angle approximation is valid for pendulum test masses and allows us to assume this driving force
always acts orthogonally to the arm of the pendulum across the pendulum’s experienced range of
motion.
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3.2 Pendulums

The common pendulum is a simple suspension of a mass from a pivot with a swinging or rotational
degree of freedom. Despite its simplicity, the mass’s emulation of a free body in response to
small displacements (in certain directions) makes it instrumental in the detection of gravitational
waves.

We investigate the use of a torsion pendulum - one which employs a torsion restoring force - to
replace linear pendulums in the detection of gravitational waves.

3.2.1 Seismic Noise

Terrestrial pendulums suffer notable seismic noise. Seismic vibration pervades across a broad band,
introducing vibration at the upper suspension point (the pivot) of any terrestrially suspended
pendulum. Though particular frequency bands of vibration are attributable to different sources,
such as earthquake or human traffic and construction, the lack of fixity of the Earth’s surface renders
complete isolation, particularly at low frequencies, impossible.

Suppression of seismic noise is difficult, as is distinguishing it from a potential gravitational wave
signal. The presence of seismic noise obfuscates any gravitational wave signal of similar frequency,
hence why observation of gravitational waves of frequencies in the noise band to which the pendulum
strongly responds, is unreliable.

3.2.2 Linear Pendulums

The well known resonant frequency f0 of a linear pendulum, when fixed at a particular region on
the Earth (of unchanging gravitational field strength), is modulated only through change in the
length of the pendulum arm L [7].

f0 =
1

2π

√
g

L
. (2)

An oscillatory system’s response to cyclic perturbation, such as a pendulum under the influence of
seismic noise or a gravitational wave, is described by the system’s transfer function [8]. The transfer
function relates the frequency of a system’s input to the amplitude of the system’s stable oscillatory
response of that frequency (after an infinite time, where initial conditions are transient).

The transfer function of a linear pendulum responding to an incident gravitational wave (modelled
as oscillatory displacement due to Equation 1) is presented in 5a and derived from the equation of
motion of a center-of-mass driven pendulum in Appendices A and B. Also presented in the linear
pendulum’s response to seismic noise (Figure 5b), as derived in Appendices C and D.

Figure 5a shows that above the resonant frequency, the test mass of a linear pendulum responds to
horizontal perturbations as if it were (approximately) free, particularly over small displacements.
Below the resonant frequency, the transfer function exponentially decays, and the test mass behaves
as if it were rigidly fixed. Meanwhile, Figure 5b shows linear pendulums respond strongly to seismic
noise below their resonant frequency, at which seismic noise is likely to occur due to its very wide
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(a) Gravitational wave (frequency f) coupling of
the linear pendulum.
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(b) Response of the linear pendulum to seismic
noise at frequency f .

Figure 5: Transfer functions of a linear pendulum of resonant frequency f0 = 1 Hz in response to
cyclic displacement at the test mass (blue) and the suspension point (red). These correspond to
the system’s oscillatory response to incident gravitational waves of frequency f and that to seismic
noise (which acts at effectively all f) respectively. The blue curve shows good gravitational wave
coupling above the resonant frequency but attenuation below, whilst the red curve shows that the
linear pendulum is sensitive seismic noise of sub-resonant frequencies.

band. This indicates linear pendulums are practical only for the detection of gravitational waves
of frequency above the pendulum’s resonant frequency.

Because the resonant frequency goes like f0 ∼ 1√
L

, its reduction by increase in pendulum arm length

is unfeasible, requiring huge increases in the height of the pendulum supporting structures.

3.2.3 Torsion Pendulums

Whereas linear pendulums feature rigid suspending arms, torsion pendulums are suspended with
cables which may twist, with a ‘rotational stiffness’ k depending on the material of the cable. This
allows the pendulum to yaw (see Figure 3), about which the resonant frequency depends on both
k and the moment of inertia about the suspension point Is [7].

f0 =
1

2π

√
k

Is
. (3)

The resonant frequency of a torsion pendulum is significantly easier to modulate than that of a linear
pendulum. The length, radius and choice of material of the cable can be modified, or the location,
masses and sizes of the bodies along the pendulum adjusted to change k and Is respectively.

TRANSFER FUNCTIONS

LEVIN POINT

COMPARE LINEAR TO TORSION
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3.3 Permanent Magnets

3.3.1 Spherical

Due to the high symmetry, modelling the magnetic dipole and magnetic field of a spherical magnet
is significantly easier than for other natural magnet geometries, such as cylindrical.

The magnetic moment of a spherical magnet of radius a and uniform permanent magnetization M
is

µ =
4πa3

3
M (4)

where the relationship between magnetization and internal magnetic field Bin (the remanent mag-
netization for a ferrimagnet) is

Bin =
8π

3
M , (5)

noting the use of Gaussian units [9, p. 195].

This suggests, by also substituting Bin →
√

4π
µ0
Bin and µ →

√
µ0

4πµ, that the magnetic dipole

moment is given in terms of the internal magnetic field (both now in the MKS system of units)
as

µ =
2πa3

µ0
Bin. (6)

The uniformly magnetized sphere is a perfect magnetic dipole; its fields are dipole in characteristic
even at close proximity [9, p. 195], allowing calculation of its external magnetic field by that of a
magnetic dipole.

B(r) =
µ0

4π

(
− µ

|r|3
+ 3

(µ · r)

|r|5
r

)
(7)

=
a3

2

(
−Bin

|r|3
+

3(Bin · r)

|r|5
r

)
. (8)

A point at a distance x from the magnet’s centre along a line parallel to the remanent magnetization
(let Bin = Binx̂ and r = xx̂) will thus experience a magnetic field of

B(xx̂) =
a3

x3
Binx̂.

3.3.2 Cylindrical

Although retaining azimuthal symmetry, a cylindrical magnet (of uniform magnetization parallel
to its axis) does not perfectly resemble a dipole and its magnetic field must be found by volume
integration. Although the field may be analytically found along the cylindrical axis [10], its general
calculation at arbitrary points in space are more easily performed numerically [11].

We’re particularly interested in the homogeneity of the external magnetic field along the boundaries
of the suspended magnet when placed in the field of the external magnet.

10
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The magnetic field along the z-axis (beginning at a circular face where the other face is encountered
for positive z) of a cylindrical magnet of height L and radius R with uniform internal magnetic
field Bin (parallel to the cylindrical axis) is

B(z) =
Bin

2

(
z√

z2 +R2
− z − L√

(z − L)2 +R2

)
[10]

WAT was I going to do here??

4 Torsion Pendulum Configuration

The pendulum arm of the MAGPI design is illustrated in Figure 4. It features a spherical test
mass attached to a cylindrical rod, countered by an attached spherical, permanent magnet which
interacts with an external magnetic field. A cylindrical cable suspends the rod from a fixed upper
suspension point.

The critical challenge of a small-scale implementation of the MAGPI design is the configuration of
its large number of inter-dependent physical parameters. The physical parameters related only to
the arm and cable of the pendulum are compiled in Table 1.

A valid configuration must see the gravitational and magnetic torques on the pendulum balance,
yield a center of mass suitably apart from the suspension point and a Levin point which lies within
the bounds of the arm, achieve a yaw resonant frequency in the millihertz band, feature a suitably
strong cable to suspend the pendulum arm and require an external magnet field of achievable
strength (the generation of which presents another set of parameters and constraints).

Although the tasks of constructing an appropriately sized table-top torsion pendulum and gen-
erating an external magnetic field sufficient to suspend it appear separate, the delicate interplay
between the pendulum’s size and mass distribution, the parameters of the field’s generator and its
introduction of additional noise in the pendulum, require the tasks are carefully and simultaneously
performed.

4.1 Center of Mass

Let the x-axis span the length of the pendulum arm from left to right, fixing the lower suspension
point at xs, the magnet at x = 0 and the test mass at xt (see Figure 4). Assume the arm constituted
by some cylindrically symmetric rod of length Lr and mass mr. Assign also the magnet a mass of
mm and the test mass mt, giving the pendulum arm a total mass of

M = mm +mr +mt. (9)

The center of mass xc of the pendulum is confined along this x-axis (between 0 and Lr), at

xc =
1

M

(
mr

Lr
2

+mtxt

)
. (10)
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Symbol Unit Description
Rr m Radius of the supporting cylindrical rod
Lr m Length of the rod
mr kg Mass of the rod
Rs m Radius of the suspending cylindrical cable
Ls m Length of the cable
xs m Position of the suspension point along the pendulum arm
Gs Pa Modulus of rigidity of the cable
σy Pa Yield strength of the cable
Rm m Radius of the attached (at x = 0) spherical magnet
mm kg Mass of the magnet
Bm T Remanence of the magnet
Rt m Radius of the attached spherical test mass
xt kg Position of the test mass
mt kg Mass of the spherical test mass

(a) Physically configurable parameters.

Symbol Unit Description
M kg Total mass of the pendulum arm
xc m Center of mass of the pendulum arm, along the length of the arm
Ic kg m2 Moment of inertia (yaw & pitch) about the center of mass of the arm
ks N m rad−1 Rotational stiffness of the suspending cable
Is kg m2 Moment of inertia (yaw & pitch) about the suspension point
f0 Hz Resonant frequency of the pendulum about the yaw axis
xL m Levin point of the pendulum arm
τg N m Gravitational torque on the pendulum arm about the suspension point
µm N m T−1 Magnetic dipole moment of the attached magnet

(b) Resulting quantities.

Table 1: Physical parameters and resulting quantities of the pendulum arm. The use of an above
symbol starred indicates that quantity when the system is constrained by having a suspension point
and test mass at opposite ends of the rod and a test mass and magnet of equal mass and radius.

12



Tyson Jones (2413 2756)

When the test mass is fixed at the end of the pendulum arm (xt = Lr) and has the same mass as
the attached magnet (mm = mt), the center of mass simplifies to

x′c =
L

2
. (11)

Such a circumstance is motivated in Section 4.3.1.

4.2 Moment of Inertia

The moment of inertia of the pendulum for yaw and roll about both its center of mass xc and
the suspension point xs is required for calculation of the Levin point, the pendulum’s resonant
frequency and the magnitude of extraneous torques.

Exploiting that moment of inertia is additive, we can combine that of each constituent of the
pendulum arm (the rod, magnet and test mass) about the center of mass, translated there from
their own natural rotational axis by the parallel axis theorem.

Consider first the spherical magnet of radius Rm attached to the left end of the rod with a mass
mm, distributed uniformly as is characteristic of permanent magnets. CIIIIIIIITE THIIISSSS.
Translating its moment of inertia about its diameter [12] at x = 0 to that about the center of mass
of the pendulum arm by the parallel axis theorem [13] yields

Im =
2

5
mmRm

2 +mmxc
2. (12)

The moment of inertia of the spherical test mass is calculated similarly, though is translated from
its position at xt.

It =
2

5
mtRt

2 +mt (xt − xc)2 . (13)

These fixtures are attached to the cylindrical rod of radius Rr, length Lr and uniformly distributed
mass mr, which is considered rotating about its central diameter [12] before translation to the
center of mass by the parallel axis theorem.

Ir =
1

12
mrLr

2 +
1

4
mrRr

2 +mr

(
Lr
2
− xc

)2

. (14)

The moment of inertia of the pendulum arm for yaw and roll about its center of mass is then the
sum of Equations 12, 13 and 14.

Ic = Im + It + Ir. (15)

The moment of inertia for similar rotations about the suspension point xs is found by the parallel
axis theorem [13] to be

Is = Ic +M(xc − xs)2. (16)

13
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For the particular setup (proposed in Section 4.3.1) where the test mass is fixed at the end of the
rod (xt = Lr) and has an equal mass and radius as the attached magnet (mt = mm, Rt = Rm)
which is fixed at the suspension point (xs = 0), the moments of inertia simplify to

I∗c =
1

60

(
5Lr

2(6mm +mr) + 48mmRm
2 + 15mrRr

2
)

(17)

and

I∗s = Lr
2
(
mm +

mr

3

)
+

4

5
mmRm

2 +
1

4
mrRr

2. (18)

4.3 Levin Point

INTRODUCE CONCEPT OF SWEET-SPOT: SHOW TRANSFER FUNCTION CHANGE. Maybe
don’t do this here????? Put in bakcground theory!

The Levin point occurs at a distance along the pendulum arm [14]

xL =

(
1 +

mtxc
2

Ic

)
xc. (19)

Notice this is not bound within [0, Lr] and through the presence of the center of mass (Equation
10) and the moment of inertia for yaw about the arm’s center of mass (Equation 16) REFERENCE
TO THIS EQUATION WHEN YOU MAKE IT, presents a complicated relationship with the other
parameters of the pendulum. SHOW HOW BAD IT REALLY IS

Numerical calculation for a variety of hypothetical (order of magnitude) pendulum configurations
demonstrated difficulty in achieving a Levin point confined to the length of the pendulum arm (i.e.
xL ≤ L), particularly when mass was concentrated around the center of mass. Though of the right
order of magnitude, the Yuri point appeared several times the length of the pendulum arm past
the center of mass, when the center of mass was closer to the test mass.

Pushing the test mass closer to the suspension point requires caution, since this reduces the mea-
surable response of the pendulum to gravitational coupling.

4.3.1 Analytic Approximation

To guide numerical investigation, we establish a simpler model to approximate our setup, where the
spherical magnet shares mass and radius with the test mass; m and r respectively. Note that raising
the mass of the attached magnet disturbs the equilibrium between gravitational and magnetic torque
on the pendulum but not harmfully; it reduces the required magnetic torque. Raising the arm’s
total mass however demands greater strength of the suspending cable and perturbs the resonant
yaw frequency of the pendulum. Assume that the rod is of negligable mass and does not contribute
to the moment of inertia.

Fixing the test mass at xt presents a center of mass

x∗c =
xt
2

(20)

14
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with a moment of inerta found by adding those due to each of the magnet and test mass (as spinning
spheres [12]), translated to the center of mass by the parallel axis theorem CITE THE PARALLEL
AXIS THEOREM.

I∗c = m

(
4

5
r2 +

xt
2

2

)
. (21)

Such a system presents a Levin point, independent of mass, at

x∗L =
xt
4

(
2 +

5xt
2

8r2 + 5xt2

)
. (22)

Equation 22 is remarkably linear in both low and high limits of xt, and shows negligable functional
variation across r in the [1 mm, 10 cm] (the extremities of feasible magnet size). Notice

x∗L|r=0 =
3

4
xt meanwhile lim

r→∞
x∗L =

1

2
xt, (23)

suggesting the Levin point as a fraction of the arm length is bounded within

x∗L
xt
∈
[

1

2
,

3

4

]
(24)

for all positions of the test mass and equal radii of the magnet and test mass.

We now relax our approximation by introducing the moment of inertia of the rod into the Levin
point, positioning the test mass at the end of the rod (xt = Lr) and maintaining the equal mass
and radii of the test mass and attached magnet (denoting them mt and Rt respectively). The rod’s
moment of inertia is that of a cylinder rotating about its center diameter (and center of mass)
[12].

I∗r =
1

12
mrLr

2 +
1

4
mrRr

2. (25)

Equation 19 indicates an increase in the moment of inertia (as the introduction of the rod incurs)
brings the Levin point closer to the center of mass. There is thus no concern of our rod translating
the Levin point to beyond the bounds of the pendulum arm.

We happily remark also that it perturbs the Levin point toward the center of mass negligably.
Substituting the mass of the rod as a fraction α of the test mass (mr = αmt) presents a Levin point
as a fraction of the rod length

x∗L
Lr

=
1

2
+

15Lr
2

(6 + α)10Lr
2 + 96Rt

2 + 30Rr
2 . (26)

Allowing α to vary between extremities α ∈ [0, 1] (corresponding to a massless rod or one as heavy
as the test mass) negligably affects the location of the Levin point. This is realised by substituting
Rt = Rr = 0 into Equation 26 (whereby variation in α becomes most significant) and observing a
variation in the position of the Levin point of only 6% the length of the rod.

We’re now assured that regardless of the particular physical values, a pendulum configuration which
features the test mass fixed at the end of the rod, equal in mass and radius with the magnet, will
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support a Levin point within the bounds of the pendulum arm, between halfway and three-quarters
the length of the arm. This will be adopted as a constraint, though only for configurations where
the suspension point is not the midpoint between the magnet and test mass, otherwise the center
of mass is at the yaw axis and gravitational-wave coupling is impossible.{

mm = mt,

Rm = Rt
=⇒ xL ∈ [0.5, 0.75]Lr. (27)

4.4 Suspending Cable

Figure 6: Illustration of the
suspended cable with exag-
gerated radius

The resonant frequency of the torsion pendulum (Equation 3) de-
pends both on the moment of inertia about the suspension point Is
and the rotational stiffness ks of the suspending cable. For simplic-
ity, we’ll model the cable as cylindrical, made from a continuous,
linearly elastic material, where rotational strain is linearly depen-
dent on rotational stress, constituted by local, infinitesimal shear
stresses [15]. The cable with circular cross-section is depicted in
Figure 6.

The rotational stiffness depends on the length Ls and radius rs
of the cable and its modulus of rigidity (or shear modulus) Gs; a
property of the cable’s material which measures responding strain to
shear stress. The relationship [16] is derived in Appendix G.

ks =
Gsπrs

4

2Ls
. (28)

This, with Equation 3, constrains the suspending cable length with
its radius in order to achieve a particular resonant frequency for
a given torsion pendulum arm configuration (encapsulated in the
yaw moment of inertia Is).

Ls =
GsRs

4

8πf0
2Is

. (29)

This is highly sensitive to the radius; small increases in radius
yield drastic increases in the required length of the suspending ca-
ble, otherwise incuring a quadratic change in resonant frequency

(f0 ∼ Rs
2

√
LsIs

). When constructing a small-scale MAGPI, an appre-

ciable surplus of suspending cable should be purchased, and the radius of the cable should be kept
economically low.

However, we note with caution that the finite strength of the suspending cable fixes a lower limit on
the radius. The weight of the pendulum arm exerts a pressure across the cross-section of the cable,
which should be kept significantly lower than the yield strength σy of the cable material.

F

A
=

Mg

πRs
2 � σy. (30)
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If the pressure exceeds the yield strength, the cable may be inelastically deformed and if the pressure
is not kept an order of magnitude smaller, elastic extension of the cable will disturb the resonant
frequency.

KEEP GOING

4.5 Gravitational Torque

Gravity exerts a downward force at the pendulum’s center of mass, which depends on the pendulum’s
total mass M and the acceleration of bodies near the Earth’s surface g. It therefore delivers a torque
[17] about the suspension point of

τ g = (xc − xs)x̂× (−Mg)ẑ (31)

= Mg(xc − xs)ŷ, (32)

which would see clockwise rolling in Figure REFERENCE TO THE ROTATIONS FIGURE HERE!!.

Static equilibrium of the pendulum about the roll axis requires this gravitational torque be opposed
by an equal magnetic torque, as produced by the interaction between the attached magnet and an
external magnetic field.

5 External Magnetic Field Generation by Helmholtz Coils

5.1 Parameters

The earliest mini-MAGPI design iteration features a spherical, permanent magnet attached below
the suspension point (at xs = 0). With radius Rm and upward (vertically) pointing, uniform,
internal magnetisation Bin = Bmẑ, the magnet’s magnetic dipole moment is calculated through
Equation 6 to be

µm =
2π

µ0
Rm

3Bmẑ. (33)

A left pointing, homogeneous, external magnetic field Be(r) = −Be(r)x̂ must be of sufficient
magnetic field strength Be at the region of the attached magnet so as to produce a magnetic torque
τm [17] to counter the gravitational torque.

τm = µm ×Be (34)

= −2π

µ0
Rm

3BmBeŷ. (35)

Imposing the torques balance (Equation 32 with Equation 35) presents a required external magnetic
field strength.

Be =
µ0g

2π

Mxc

BmRm
3 . (36)
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Symbol Unit Description
RH m Radius and separation of the Helmholtz loops
NH Number of windings of wire around each loop
JH A Current through the loops
Rw m Radius of the wire wound around each loop
ρw Wm Resistivity of the wound wires
αw m/m K Coefficient of linear thermal expansion of the wire material
εH Emissivity of the Helmholtz loops
η Packing density of wires in Helmholtz loop bundle

(a) Physically configurable (though not all tunable) parameters.

Symbol Unit Description
Rb m Cross-sectional radius of the wire bundle of each loop
Sb m2 Total exterior surface area of both wire bundles (combined)
Lw m Total length of wound wire (between both loops)
ζH Ω Total electrical resistance of both coils (combined)
PH W Total power dissipated between both coils (combined)
TH K Equilibrium (radiative) temperature of the Helmholtz coil

(b) Resulting quantities.

Table 2: Physical parameters and resulting quantities of the Helmholtz coil.

The intuitive device for the controlled generation of magnetic fields in a laboratory environment is
the Helmholtz coil. When the magnetic coils of NH windings and radius RH are separated by RH ,
a current JH through the coils produces a magnetic field at the center of the coil pair of strength
[17]

BH =
8

5
√

5

µ0NHJH
RH

. (37)

The available, configurable parameters of the Helmholtz coils and the resulting physical quantities
are compiled in Table 2.

The magnetic field produced by a Helmholtz coil is very homogeneous along the axis of symmetry,
but less so off-axis, where the field grows weaker [17]. Precise calculation of the magnetic torque
on the attached magnet requires calculation of the external magnetic field strength at all points
in the space occupied by the attached magnet. Modeling the magnetic field off-axis is difficult
and unnecessary; instead, the field will be assumed homogenous everywhere between the coils, of
strength equal to that at the center. This will present an insignificant underestimate of the required
external field strength, still useful for judging the feasibility of field generation with a Helmholtz
coil.

We remark that construction of a mini-MAGPI experiment does not require precise knowledge of
the external field strength. Instead, the field strength may be modulated by control of the current
in the coil, to experimentally achieve a balanced pendulum arm.

Attempting to generate our external field with a Helmholz coil and equating Equations 36 and 37
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constraints the pendulum arm parameters with the Helmholtz coil parameters.

JH =
5
√

5g

16π

Mxc

BmRm
3

RH
NH

. (38)

If we introduce the simplifying assumption that the test mass and attached magnet have equal mass
and radius (as motivated in Section 4.3.1), we can express the required Helmholtz current in terms
of the rod length Lr, rod mass mr, magnet (and test mass) mass mm and radius of the attached
magnet (and test mass) Rm (substituting Equation 11).

JH
∗ =

5
√

5g

32π

Lr(2mm +mr)

BmRm
3

RH
NH

. (39)

I DON’T WANT TO APPLY SIMPLIFYING ASSUMPTIONS YET! I CHANGED MY MIND

This is formulated for current which is easier to modulate (may be stepped up or down with
transformers) than physical parameters like the number of turns and the radius of the loops.

Equation 39 goes like JH ∼ Rm−3 and is very sensitive to changes in radius of our attached magnet.
This is no surprise since volume also goes like the cube, suggesting

JH ∼
1

Vm
, (40)

where Vm is the volume of the attached (spherical) magnet. We caution however that the radius of
the attached magnet must be considered in conjuction with the separation of the Helmholtz coils,
within which the magnet must fit. The mass of the magnet mm also varies with the cube of its
radius (mm ∼ Rm3) if a particular magnetic material is chosen.

This actually gives appreciably low currents! Like 12V for 200 turns and 2cm radius magnets!
Yay!?

Should I estimate stuff here?!

5.2 Geometric Model

When the Helmholtz coil is operational, our desirably static pendulum arm suggests no power is
disspated in the produced magnetic field. All power is instead dissipated as heat through the wound
wires which make the coils, and may require evacuation.

Recall that our required field strength is a small underestimate. Calculation of the power of the
Helmholtz coil requires estimation of its total electrical resistance, which in turn necessitates a more
precise geometric model of the loops.

We model the wire bundle of each loop as a torus; a closed loop of circular cross-section. This is an
acceptable approximation which ignores the insignificant irregularity at the bundle surface (which
is not smooth) and at the end-points of the wire (which are connected to positive and negative
terminals).
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The wires are assumed, when laid flat, cylindrical with radius Rw. We can approximate the total
length of wire required (expected as a small underestimate) as that of NH rings of radius RH , for
each loop. This suggests a total length (of both loops combined) of

Lw = 4πNHRH , (41)

with circular cross-sectional area
Aw = πRw

2. (42)

Assigning our wires resistivity ρw, Equations 41 and 42 suggest a total electrical resistance [18] in
our Helmholtz coils of

ζH = 4ρw
NHRH

Rw
2 . (43)

We’ll here continue our geometric description of the Helmholtz coil, used in subsequent calculations.
To estimate the total exterior surface area of our wire bundle, we must first estimate its circular
cross-sectional radius, based on the packing ofNH instances of radius Rw wire cross-sections (circles)
into said cross-section.

The total cross-sectional area of torus, required to fit NH instances of wire, is related to the total
cross-sectional area of wire by a circular packing density η ∈ (0, 1]. The wire bundle’s cross-sectional
radius can be related back to this packing density as

Rb = Rw

√
NH
η
, (44)

and, together with the radius of our Helmholtz coils, suggests a total exterior surface area [19] of
both the torus wire bundles (combined) of

Sb = 8π2RwRH

√
NH
η
. (45)

DIAGRAMSSSSS OF TORUSSSSSS AND OF CROSS-SECTION!!!!!!

5.3 Heat Generation

The total power generated by both Helmholtz coils, output as heat through the wire bundles, can
now be approximated as (substituting Equations 38 and 43)

PH = JH
2ζH (46)

=
ρw
NH

(
gMxc
πBmRw

)2(
5

4

RH

Rm
2

)3

. (47)

This is not the net power into the coils, which may also absorb heat from its environment by
radiation and convection.

SHOULD WE CALCULATE THE POWER GENERATED NUMERICALLY HERE? IF YOU
DON’T USE SIMPLIFYING ASSUMPTIONS, YOU MUST DISCLAIM THAT THE LEVIN
POINT MAY BE INCONVENIENT (OFF THE BAR)
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5.4 Heat Evacuation by Radiation

Ideal circumstances would see all generated heat effectively evacuated from the Helmholtz coil by
thermal radiation. This is preferential, since containment of the small-scale MAGPI setup inside
a vacuum chamber makes other methods of evacuation challening. The Stefan-Boltzmann law [20]
gives the power of thermal radiation of our Helmholtz coil, when the coils (of emissivity εH) are at
temperature T ′H , as

P ′H = σεHSbT
′
H

4
, (48)

where σ is the Stefan-Boltzmann constant (σ ≈ 5.67× 10−8 W m−2 K−4).

Comparison with Equation 47 (and substitution of Equation 45) presents an underestimate of the
temperature TH of the coils at which all generated heat is effectively radiated.

TH ≈
1

4π

(
gMRHxc

BmRm
3

)1/2(
53

2

ρw

σεHRw
3

)1/4(
η

NH
3

)1/8

. (49)

This ignores the additional, extraneous source of heat by thermal absorption from the environment,
which would see a higher temperature of equilibrium, though is sufficient for assessing the feasiliby
of radiative heat evacuation.

We can emulate a black body by painting our wires black and setting εH ≈ 1 [20]. The feasibility of
radiative cooling is judged by the magnitude of TH ; whether it is appropriately cool for operation
in a laboratory environment, to be sustained well below temperatures which would incur melting or
deformation of the setup. A reasonable threshold was assumed to be T ≈ 100 ◦C (the boil point of
water), beyond which we expect our paint to melt or evaporate and our Helmholtz wires to expand
appreciably (∼ 100 mm).

Uniform, linear thermal expansion ∆Lw = αwLw∆T [21] of the Helmholtz coil wires sees an increase
in the radius of (approximately) each winding (and thus the approximate Helmholtz loop radius)
of

∆RH =
αwLw∆T

2πNH
, (50)

where αw is the linear thermal coefficient of the wire, specific to its material. Taking ∆T = TH−293
(the difference in the equilibrium temperature and room temperature) allows calculation of the
expansion of the Helmholtz loop radius as the loops warm during operation.

Numerical estimates of the small-scale MAGPI parameters and their propogation to physical quanti-
ties are presented in Table 3, and present an underestimated minimum temperature of the Helmholtz
coils to achieve stable radiative cooling of TH ≈ 120 ◦C; above the acceptable threshold.

At a temperature of TH ≈ 120 ◦C, the considered Helmholtz loop radii expand by 0.3 mm, or 0.3%.
This is small, but unrealistically assumes each loop of wire expands concentrically. Instead, wire
expansion of such magnitude is likely to altar the packing arrangement of the wires in the bundle,
deforming the Helmholtz loops.

Since Equation 49 shows notable insensitivity to most parameters, reducing this temperature by
careful parameter choice is difficult. Furthermore, the assumed parameters offered in Table 3
feature a center of mass quite close to the suspension point (xc = 10 cm). Better gravitational-wave
coupling occurs when the center of mass is further out, for which the gravitational torque increases
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Symbol Value Unit Description
M 1 kg Total mass of the pendulum arm
xc 10 cm Center of mass of the pendulum arm
Rm 2 cm Radius of the attached magnet
Bm 1 T Remanence of the attached magnet (typical of ferromagnets [22])
RH 8 cm Radius of the Helmholtz coil
NH 200 Number of turns of wire wrapped around each Helmholtz coil
Rw 1 mm Radius of the wires of the Helmholtz coils
ρw 1.7× 10−8 Ω m Electrical resistivity of the Helmholtz coil wires (that of Copper

[23])
αw 16.6× 10−6 m/m K Coefficient of linear thermal expansion of the Helmholtz coil wires

(that of Copper [24])
η 0.8 Packing factor of the wires in the Helmholtz coil bundles [25]

(a) Assumed pendulum arm and Helmholtz coil parameters.

Symbol Value Unit Description
PH 130 W Power generated by the Helmholtz coil (as heat)
TH 390 K Minimum temperature of the Helmholtz coils required to radiate all heat
BH 25 mT Magnetic field strength generated by the Helmholtz coils at their center
JH 11 A Current required through the Helmholtz coil

∆RH 0.3 mm Expansion in Helmholtz coil radius incurred from room temperature to TH .

(b) Relevant resulting quantities.

Table 3: Estimated numerical values of the small-scale MAGPI parameters and the relevant result-
ing physical quantities.
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as does the required external field strength, and consequentially the power and temperature of the
Helmholtz coils also go up.

The results in Table 3 demonstrate radiative cooling is insufficient and an active mechanism of heat
evacuation from the Helmholtz coil must be employed.

5.5 Heat Evacuation by Convection

We also considered the cooling of the Helmholtz coils by convective heat transfer. With the small-
scale MAGPI setup contained in a vacuum chamber, convective cooling requires the pumping of
water through the system. An electrically insulating, thermally conductive material must separate
the water and the coils to prevent short-circuit, and the pendulum arm cannot contact the coolant
without experiencing severe mechanical noise due to fluid forces [26].

Pumping coolant through a tube which contacts only the Helmholtz coil loops still produces addi-
tional noise. Fluid turbulence would cause undirected vibration in the tube and Helmholtz loops
[26]. Due to the inhomogeneity of the external magnetic field off the axis of symmetry, vibration
of the loops lead to fluctuation of the magnetic field strength experienced by the attached magnet,
and therefore the magnetic torque on the pendulum arm. Fluctuation in the net torque sees the
pendulum arm destabilise and roll, introducing significant mechanical noise into the system.

There are therefore no obvious, acceptable, convective methods of heat evacuation from the Helmholtz
coil.

5.6 Heat Evacuation by Conduction

Heat may also be conducted away from the Helmholtz coils to a cold reservoir. A thermal conductor
can be in contact with (though electrically insulated from) the Helmholtz coils and connect to a
simple ice bath kept at 0 ◦ by the ice to water phase change [27]. Replenishment of the ice in the
bath can sustain the reservoir indeterminately, at conveniently infrequently as judged by the power
of the coils in Table 3.

SHOULD I CALCULATE A FREQUENCY UPPERBOUND OF CHANGING ICE BASED ON
ENTHALPY OF FUSION??

Fourier’s law gives the rate of heat Pc conducted from the Helmholtz coils at temperature TH
through a medium of thermal conductivity κc, length Lc and area (at right angles to the heat
gradient) Ac [28], to a 0 ◦C reservoir as

P = κcAc
TH − 273

Lc
. (51)

[29] [30] [31]
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5.7 Numerical Assessment

6 External Magnetic Field Generation by Ferrimagnets

6.1 Spherical

6.2 Cylindrical

6.3 Rings

6.3.1 Displacing Instability

6.3.2 Flip Instability

7 Other Considerations

• Thermal noise

• Eddy current noise

• Radiation noise

8 Conclusions
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A Linear Pendulum Gravitational Coupling Equation of Mo-
tion

Consider a frictionless, linear pendulum of mass m and arm length l which swings in the x direction,
in an interferometer of path-length L. Let θ(t) be the pendulum’s angle with the vertical and xb(t)
the horizontal position of the mass (with xb = 0 below suspension), related exactly by xb =
l sin(θ).

We can model a gravitational-wave strain as an oscillatory, extraneous force acting at the pendu-
lum’s center of mass. Assuming the strain is small, a small angle approximation enables us to assume
this force always acts orthogonally to the arm of the pendulum, in the x-vertical plane.

We construct the vector-position and scalar-speed of the pendulum’s mass.

x(t) =
(
l sin(θ(t)), −l cos(θ(t))

)
v(t) = |x′(t)| = l|θ′(t)|.

The gravitational potential energy of the mass is intuitively

V (t) = mgx2

= −mgl cos(θ(t))

and the kinetic energy

T (t) =
1

2
mv2(t)

=
1

2
lmθ̇2(t),

which together form the Lagrangian L(t) = T (t)− V (t).

Our oscillatory driving force however is non-conservative and not associated with a potential, and
is incorporated into the Lagrangian formalism as a generalised force.

Q(t) = F (t) · ∂x(t)

∂θ(t)

= F (t) ·
(
l cos(θ(t)), l sin(θ(t))

)
.

where F (t) is our vectorised driving force. Notice however that our right vector is orthogonal to
the pendulum arm... (

l cos(θ(t)), l sin(θ(t))
)
· x(t) = 0 ∀t
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and so is parallel (or anti-parallel) to our driving force, allowing us to write

Q(t) = F (t)
∣∣(l cos(θ(t)), l sin(θ(t))

)∣∣ = lF (t),

noting that we’ve not taken the absolute value of F (t) to encapsulate direction.

The Euler-Lagrange equation for this system with parameter θ(t) is

Q(t) =
∂

∂t

(
∂L(t)

∂θ̇(t)

)
− ∂L(t)

∂θ(t)

lF (t) = lmθ̈(t) +mg sin(θ(t)).

If we now substitute the small angle sine (sin(θ(t)) ≈ θ(t)) and therefore that xb(t) ≈ l sin(θ),
we’re presented with the equation of motion for a driven (orthogonally to the arm), undamped
pendulum.

F (t) =
gm

l
xb(t) +mẍb(t).

B Linear Pendulum Gravitational Coupling Transfer Func-
tion

Consider an ideal frictionless linear pendulum of mass m and arm length l which swings in the x
direction.

We model a gravitational-wave strain as an oscillatory, extraneous force acting at the pendulum’s
center of mass. Assuming the strain is small, a small angle approximation enables us to assume
this force always acts orthogonally to the arm of the pendulum, in the x-vertical plane.

Letting xb be the horizontal position of the mass relative to the suspension point, the equation of
motion of our pendulum subject to a gravitational-wave strain (dervied in Appendix A) is

F (t) = Lmḧ(t) =
gm

l
xb(t) +mẍb(t), (52)

where we’ve also substituted the form of this force (Equation 1).

We move to frequency space by applying the Fourier transform to both sides of Equation 52,
letting

Xb(f) = F{xb(t)} and H(f) = F{h(t)} (53)

where

ẍb(t)→ −f2Xb(f) and ḧ(t)→ −f2H(f). (54)

This presents

− Lf2H(f) =
(g
l
− f2

)
Xb(t). (55)

The transfer function of the linear pendulum in response to a gravitational-wave strain is found by
rearranging Equation 55 and substituting the linear pendulum critical frequency f0

2 = g/l.

T (f) =
Xb(f)

LH(f)
=

f2

f2 − f02
. (56)
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C Linear Pendulum Seismic Noise Equation of Motion

Consider a frictionless, unforced, linear pendulum of mass m and arm length l which swings in the
x direction, which features a time-varying suspension position xt(t) and a consequentially varying
mass position xb(t).

INSERT DIAGRAM

Assuming the angle φ between the pendulum arm and the vertical is kept small, we apply the small
angle approximation and write

φ(t) ≈ sin(φ(t)) =
xb(t)− xt(t)

l
. (57)

The position of the mass, given vectorially and noting the absolute vertical position to be arbitrary,
is

r(t) =
(
xb(t), −l cos(φ(t))

)
≈
(
xb(t), −l

(
1− 1

2φ
2(t)

))
(58)

with velocity
v(t) = ṙ(t) =

(
ẋb(t), lφ̇(t)φ(t)

)
. (59)

This allows for an expression of the kinetic energy of the mass as

T (t) =
1

2
m|v|2

=
1

2
m

(
ẋ2b(t) +

(xb(t)− xt(t))2(ẋb(t)− ẋt(t))2

l2

)
(60)

and a potential (gravitational) energy of

V (t) = mgr2(t)

= glm

(
1− (xb(t)− xt(t))2

2l2

)
, (61)

which together constitute the Lagrangian

L = T + V.

The equation of motion is established by construction of the Euler-Lagrange equation and cancelling
m. CITE

0 =
d

dt

(
∂L

∂ẋb

)
− ∂L

∂xb

=⇒ 0 = l2ẍb − (xb − xt)
(
gl + (ẋb + ẋt)

2 + (xb + xt)(ẍb − ẍt)
)

(62)

28



Tyson Jones (2413 2756)

D Linear Pendulum Seismic Noise Transfer Function

Consider an ideal, frictionless linear pendulum of mass m and arm length l which swings in the
x direction. Its response to seismic noise, modeled as small-angle oscillatory perturbation of the
suspension point of the pendulum, is described by the equation of motion (derived in Appendix
C)

l2ẍb − (xb − xt)
(
gl + (ẋb + ẋt)

2 + (xb + xt)(ẍb − ẍt)
)

= 0 (63)

where xb and xt are the time-dependent x-positions of the bottom and top (the mass and suspension
point) of the pendulum respectively, and g is the acceleration due to gravity near the Earth’s
surface.

We move to frequency space by Fourier transforming Equation 63, letting

Xi(f) = F{xi(t)}

(for each of i = b, t, imagined as the amplitude of the oscillations of the bottom and top of the
pendulum respectively) where, by assuming these terms oscillatory, the n-th derivatives transform
as

F{xi(n)(t)} = (if)nXi(f).

This presents
gl(Xt −Xb) + (l2Xb + 2(Xb −Xt)

3)f2 = 0. (64)

Under the small angle approximation, we neglect any angle terms higher than second order, setting
(Xb − Xt)

3 ≈ 0. Also substituting the resonant frequency of a linear pendulum f0
2 = g/l CITE,

we rearrange to find the transfer function as the ratio of the amplitude of the responding mass
oscillations to that of the seismic vibrations.

Ts(f) =
Xb(f)

Xt(f)
=

f0
2

f0
2 − f2

. (65)

E Torsion Pendulum Seismic Response

F Torsion Pendulum Gravitational Coupling

G Rotational Stiffness of a Cylindrical, Linearly Elastic Ca-
ble

The rotational stiffness k is also known as the couple per unit twist ; the torque causing longitudinal
rotation induced by a unit of twist of the cable.
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Under the assumption of a linearly elastic material, shear stress τ is linearly related to a shear
strain γ by the shear modulus Gs [15];

τ = Gsγ. (66)

A cylinder of radius rs subject to angle of longitudinal twist per unit length θ, experiences at every
point parameterized by radius ρ < rs a shear strain of

γ = ρθ (67)

and thus a shear stress of
τ = Gsρθ. (68)

An infinitesimal cross-sectional area dA experiences an infinitesimal shear force

dF = τ dA (69)

and therefore a torque
dT = dFρ = τρdA. (70)

The rotational torque on a cross-section of the cable is found by integration over the full cross-
sectional area A of the cable.

T (θ) =

∫
A

τρ dA (71)

= Gθ

∫
A

ρ2dA. (72)

We recognise the integral expression of the polar moment of inertia of a uniform cylinder, and
substitute its value for a circular cross-section [32].

T (θ) = Gsθ
πrs

4

2
. (73)

By assuming the rate of twist along the cable of length Ls is uniform, a total twist angle of φ = Lsθ
produces a total torque

T (φ) = Gs
φ

Ls

πrs
4

2
. (74)

The rotational stiffness of our cylindrical, linearly elastic cable [16] is therefore

k =
T (φ)

φ
(75)

=
Gsπrs

4

2L
. (76)
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